As2S3/Sr(Ti0.7Co0.3)O3 and As2S3/Sr(Ti0.6Fe0.4)O3 strip-loaded waveguides for integrated magneto-optical isolator applications

نویسندگان

  • Lei Bi
  • Hyun-Suk Kim
  • Juejun Hu
  • Lionel C. Kimerling
چکیده

Sr(Ti0.6Fe0.4)O3 (STF) and Sr(Ti0.7Co0.3)O3 (STC) room-temperature ferromagnetic oxides were grown epitaxially on LaAlO3(001), (LaSr)(AlTa)O3 (001) and Si (001) substrates. Both materials were demonstrated to be magneto-optically active, and more optically transparent at 1550nm wavelength compared with other non-garnet ferromagnetic materials. As2S3/STF and As2S3/STC strip-loaded waveguides were fabricated on epitaxial STF or STC films grown on LSAT (001) substrates using thermal evaporation and lift-off processing. The absorption of STF at 1550 nm was measured by ellipsometry and by optical transmission spectrum measurements of the As2S3/STF waveguides, which gave similar results. A novel design for a Non-Reciprocal Phase Shift (NRPS) strip-loaded waveguide using chalcogenide glass (ChG) as the guiding layer is proposed. The NRPS and figure of merit of these waveguides are simulated. The ChG strip-loaded waveguide structure shows advantages both in fabrication and device performance according to the simulation results. Our study suggests the possibility of magneto-optical magneto-optical isolators monolithically integrated on a silicon platform.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications

We report two novel strategies to integrate magneto-optical oxides on oxidized silicon and SOI platforms based on strip-loaded waveguide structures. By using conventional waveguide fabrication and thin film deposition techniques, strip-loaded waveguides for magneto-optical non-reciprocal phase shift (NRPS) applications can be integrated on a silicon platform. As a demonstration, two structures,...

متن کامل

Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integra...

متن کامل

Dry-etch of As2S3 thin films for optical waveguide fabrication

Plasma etching to As2S3 thin films for optical waveguide fabrication has been studied using a helicon plasma etcher. The etching effects using the processing gases or gas mixtures of O2, Ar, and CF4 were compared. It was found that the O2 plasma had no chemical etching effect to the As2S3, but it could oxidize the surface of the As2S3. The Ar plasma provided a strong ion sputtering effect to th...

متن کامل

Chalcogenide As2S3 Sidewall Bragg Gratings Integrated on LiNbO3 Substrate

This paper introduces the design and applications of integrated As2S3 sidewall Bragg gratings on LiNbO3 substrate. The grating reflectance and bandwidth are analyzed with coupled-mode theory. Coupling coefficients are computed by taking overlap integration. Numerical results for uniform gratings, phase-shifted gratings and grating cavities as well as electro-optic tunable gratings are presented...

متن کامل

On-chip optical isolation in monolithically integrated non-reciprocal optical resonators

Non-reciprocal photonic devices, including optical isolators and circulators, are indispensible components in optical communication systems. However, the integration of such devices on semiconductor platforms has been challenging because of material incompatibilities between semiconductors and magneto-optical materials that necessitate wafer bonding, and because of the large footprint of isolat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009